
State Space Model (Smoothing)
• State space model expects copy ratios between adjacent amplicons to differ with probability 𝑝
• These abrupt changes in copy ratio have variance 𝜎!
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Thalassemia Profiling 
• We are given a list of profiles 𝑑% defined by 𝐸 𝑥 𝐷 = 𝑑% (the expected copy ratio per amplicon)
• Optimal decision: profile with maximum posterior density
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• Simply reuse samples from particle filter to approximate
Bayesian Evidence-based Sample Quality Estimate
• Use the median to ignore jumps, compare between samples
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Figure 2. Confusion matrix with and without using sample QC based filtering. We evaluate the detection of a variant both with
and without the QC step defined by the third equation. Without this QC step, we observe 13 false positives. When filtering is
applied, this drops to 5. We also evaluate our accuracy in predicting the exact thalassemia profile, which without QC step is 88.7%
accuracy, which rises to 93.7% accuracy with QC.

Schematic of PiVAT® ’s Algorithm
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ABSTRACT

Introduction. Liquid biopsy and targeted NGS have emerged as economical and effective options for
disease diagnosis, particularly genetic disorders. However, detecting copy number variations (CNVs)
and associated disorders is a significant challenge. PiVAT® (Pillar’s Variant Analysis Toolkit) with our
inheritRevealTM Thalassemia RUO panel currently has capabilities to help labs detect thalassemia that
has performed well previously, however, it has struggled with overconfidence in clinical normals. We
developed a Bayesian model to estimate the sample CN ratios along with an annotation on
thalassemia type. A state space model is used to estimate the CN ratio at each exon, these estimates
are then used to profile the type of thalassemia using statistical decision theory. We can provide
uncertainty quantification for both the annotations and the copy ratio estimates, along with quantitative
metrics for sample quality and confidence, making it a robust tool for precision molecular testing.
Methods. We analyzed 13 normal controls and 44 samples with different forms of alpha thalassemia.
To augment our dataset, we performed 4-fold evaluation, using two of the normals for evaluation per
run, resulting in 220 sample/normal pairs. Our caller was used to help determine specific forms of
alpha thalassemia and estimate copy ratios. We subsequently evaluated the sensitivity and specificity
of the annotations, the accuracy of subtype identification, and the precision of copy ratio estimations.
As a baseline comparison, we used a previous version of the thalassemia caller used by PiVAT®.
Results. We obtained an overall 88% accuracy rate in annotations with a 96% sensitivity and 93%
specificity rate. Furthermore, we found that among the calls that were incorrectly annotated, over 50%
of the cases were flagged by the PiVAT® annotation quality score as being poor quality. When low-
quality samples are removed, we obtain a specificity rate of 97% while maintaining a sensitivity rate of
95%. By comparison, the previous PIVAT® caller on the same dataset obtained a 67% accuracy rate.
Conclusions. The work on using targeted sequencing to help detecting thalassemia is limited,
highlighting the need for improved diagnostic tools. Our thalassemia caller within PiVAT® provides high-
accuracy annotations while assessing the uncertainty in these annotations. PiVAT®’s secondary
analysis tool demonstrates excellent performance, requiring as little as 10ng of DNA for accurate
results. Additionally, the open-source nature of our code ensures accessibility and potential for further
development by the research community. This robust and reliable tool enhances the precision and
reliability of thalassemia clinical assessment, making a significant contribution to the field.

EXPERIMENT DESIGN

• Panel coverage: 131 amplicons covering alpha, beta, delta, gamma and epsilon regions,
pseudogenes and control regions

• Median amplicon size of 158bp

• Clinical samples tested:
• 44 positive samples
• 13 negative

ALGORITHM OVERVIEW

CONCLUSIONS

Overall Results Summary

Figure 4. Stratification of sample based
on a Bayesian evidence-based quality
metric. Demonstration of the quality metric
in separating samples whose profile do not
match those of the normals. Samples with
quality metric three standard deviation (3sd)
below the mean are rejected as poor quality.
In this example, all FFPE positive samples
were compared to cell line normal samples
and were deemed poor in quality. The impact
of FFPE damage makes a cell line normal an
inadequate comparator and consequently,
makes CNV prediction inaccurate. Cell line
positives samples share similar profile to the
normal and are all above our 3sd cutoff.

• Pillar’s inheritRevealTM Thalassemia RUO panel can accurately help profile thalassemia in clinical
samples using a targeted sequencing-based approach.

• Here we present a new machine learning approach for helping profile thalassemia types in targeted
sequencing dataset.

• We also implement a Bayesian evidence-based quality metric to improve overall profiling and
prediction accuracy.

• Larger studies would be needed to establish the clinical utility of this approach.

RESULTS
Impact of Smoothing on Estimated Copy Number Ratio

Bayesian Evidence-based 
Sample Quality Estimation

RESULTSSample Type Sample Zygosity N
α3.7 del Heterozygous 31
α3.7 del Homozygous 5
SEA del Heterozygous 2
α4.2 del Heterozygous 2
FIL del Heterozygous 1

α4.2 dup Heterozygous 1
Large HBA1/2 dup Heterozygous 1
α4.2dup/α3.7del Heterozygous 1

Table 1. Breakdown of the expected Thalassemia types of the positive samples tested in this study. Thalassemia types of
the samples are shown along with the expected zygosity. Thalassemia types for each sample were previously established using
PCR test.

Figure 1. Schematic representation of PiVAT’s Thalassemia calling algorithm. The data ingested by PiVAT®’s Thalassemia
calling algorithm originate from a targeted sequencing panel. The data undergo several steps for quality control, alignment, and
refinement to ensure high quality data are passed to downstream processes. The inputs to the thalassemia calling algorithm are
per amplicon and per sample coverages. As with most targeted sequencing data, natural variation in the sequencing coverage
exists that does not necessarily reflects the true copy number of the genomic fragment sequenced. Consequently, a CN-free
negative control sample is required to normalize the counts. The normalized counts are processed through a state space model to
smooth CN estimates and obtain sample quality metric. The smooth CNs are subsequently used to predict the thalassemia type.

Predicted
No QC QC

Negative Positive Negative Positive

Actual
Negative 31 13 29 5
Positive 1 175 1 168
Accuracy 88.7% 93.7%

Mathematical Modeling of PiVAT®’s State Space Model

• Sequencing was performed on 
Illumina’s MiSeqTM platform

• Average per amplicon coverage was 
~2,800 read pairs

• Data Analysis: All the samples were 
analyzed on Pillar’s secondary 
analysis pipeline, PiVAT®

Figure 3. Example copy number (CN) plot
for a heterozygous α3.7 deletion. The
figure shows the empirical CN ratios across
all amplicons for a α3.7 deletion sample. The
empirical ratios are smoothed out using
PiVAT® ‘s space model to estimate the CNV
ratio shown in cyan line. This estimated CNV
ratio is used to identify the thalassemia call,
matching the expected deletion shown by the
green arrow.


