

Performance of Pillar oncoReveal™ Essential MPN Panel: experiences of two clinical diagnostic laboratories

ACL - Advocate Clinical Laboratories

#H048

L. Mazur¹, J. Sok¹, M. Patel¹, S. Spirtovic¹, J. Wesolowski¹, M. Connolly¹, S. Ghimbovschi¹, A. Tanner¹, S. Benhamed¹, S. Gomez¹, J. Wang³, D. Salari²; C. Sammons²; H. Amidon²; K. Marshall²; H.M. Drendel³, R. Borok⁴, M.L. Mihalov⁴.

¹Advocate Health ACL Laboratories, Rosemont, IL., ²Atrium Health Molecular Pathology Laboratory, Charlotte, NC, ³Carolinas Pathology Group, NC, ⁴Midwest Pathology, IL

Introduction

Standard of care for the clinical evaluation of myeloproliferative neoplasms (MPN) involves the molecular analysis of three driver genes, JAK2, CALR, and MPL using a single-gene testing cascading algorithm. Utilization of reflex PCR provides inadequate turn-around time (TAT), may introduce errors due to sample splitting, and expensive to logistically manage. In this study we evaluated the performance of the oncoRevealTM Essential MPN Panel from Pillar Bioscience.

Materials and Methods

Materials:

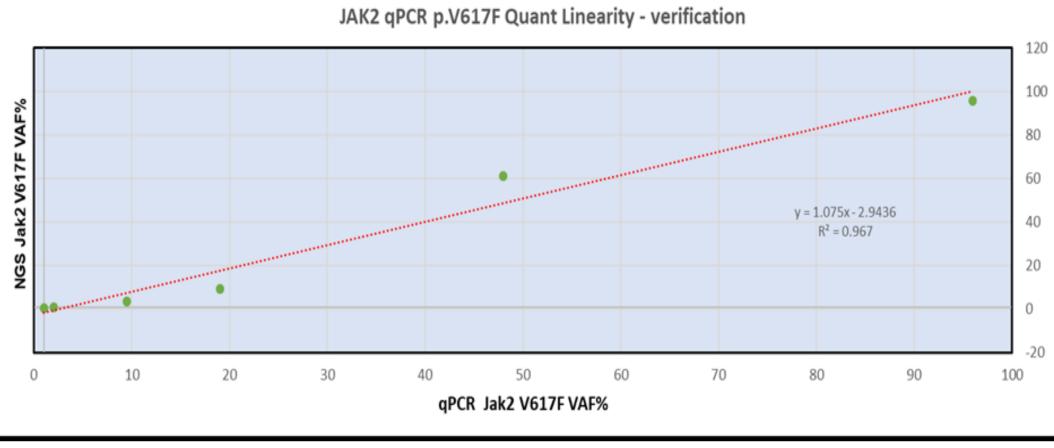
DNA extracted from blood/bone marrow clinical samples were used to evaluate the assay. DNA extraction was performed on a Promega Maxwell and a Roche Magna Pure 96. Identified reportable mutations were confirmed by a secondary orthogonal method such as (PCR, qPCR or PCR/CE).

Methods:

The oncoRevealTM Essential MPN Panel (Pillar Biosciences) utilizes proprietary SLIMamp® (stem-loop inhibition mediated amplification) technology, allowing amplification of regions of interest in a single tube, multiplex reaction. NGS libraries were prepared manually and sequenced on the Illumina MiSeqTM and Illumina NextSeq 550 Dx platform. Sample results and reports were generated by using PiVAT® (Pillar Biosciences' Variant Analysis Toolkit).

Assay was run in two ACL Laboratory sites Charlotte, NC and Rosemont, IL

Limit of Detection


			JAK	2 V617F, (CALR, N	IPL DNA c	oncentrat	ion stud	ly (SeraCa	re)			
		(CALR (52 bp p.L367T fsTe			MPL (SNV p. W515L	•		N542	JAK2 (Del E543del	1bp) + SI	V V V617F	
Dil.	Date	AF%	Var	Total	AF%	Var	Total	AF%	Var	Total	AF%	Var	Total
	RANGE	4.5	>10	>1000	5.5	>10	>1000	9.1	>10	>1000	7.5	>10	>1000
10ng/ul		5	773	16699	5	589	11319	7.4	954	12843	6.2	816	13069
10ng/uL		5	809	16974	5	578	12013	8.3	1092	13233	6.7	907	13559
	AVE	4.7	791	16837	5.0	584	11666	7.8	1023	13038	6.5	862	13314
5ng/uL		5	758	16426	6	584	10366	9	1082	12176	6	738	11877
JIIB/UL		5	790	15998	5	484	9796	8	944	11909	6	766	12055
	AVE	4.8	774	16212	5.3	534	10081	8.4	1013	12043	6.3	752	11966
2ng/uL		4	801	19760	5	663	12345	9	1196	13709	7	907	13559
Ziig/uL		5	1045	21758	6	860	13923	9	1402	16044	7	1125	15678
	AVE	4.8	1045	21758	6.2	860	13923	8.7	1402	16044	7.2	1125	15678

	Limit of detection SeraCare QC dilution series													
				CALR (52 bp	-	MPL (SNV)			JAK2 (Del 1bp) + SNV					
				p.L367T fsTe	er46		W515L			N542_E	543del		V617	F
4	Dil.	Date	AF%	Var	Total	AF%	Var	Total	AF%	Var	Total	AF%	Var	Total
		RANGE	4.5	>10	>1000	5.5	>10	>1000	9.0	>10	>1000	7.0	>10	>1000
			1.5	120	7976	1.7	97	5728	2.2	144	6430	2.1	148	7033
4			1.3	151	11375	1.7	143	8271	2.7	258	9512	2.1	199	9601
	1:3		1.3	110	8336	1.8	109	6197	2.8	181	6518	1.9	147	7720
			1.5	122	8353	1.8	113	6319	2.6	176	6693	2.2	159	7151
			1.6	146	8975	1.9	118	6370	2.7	191	7189	2.1	165	8004
		AVE	1.5	1.5	100%	1.7	1.8	100%	2.6	3.0	100%	2.1	2.3	100%
			0.5	41	7800	0.6	37	6328	1.0	66	6924	0.7	53	7797
			0.5	48	9040	0.5	35	6500	0.9	63	6873	0.6	48	8378
	1:5			Failed		0.5	30	5703	1.0	63	6252	0.6	40	7123
				Failed		0.6	42	7265	0.8	56	7239	0.5	44	8796
				Failed		0.5	37	7258	0.6	49	7599	0.7	52	7716
		AVE	0.5	0.8	40%	0.6	1.1	100%	1.0	2.2	100%	0.70	1.5	100%
				Failed			Failed		0.6	35	5969		Failed	
-				Failed			Failed		0.5	31	5778		Failed	
	1:10			Failed			Failed		0.6	37	5929		Failed	
				Failed			Failed			Failed			Failed	
				Failed			Failed			Failed			Failed	

Results Comparison

An	alytical spe	cificity a	nd sensitivi	ty
ACL VALI	DATION		CAP Cell Lin	ies
		+	-	Total
NGS MPN	+	132	0	132
Illumina	-	0	26	26
			Total	158
%				
100.0	PPA - Positive	e percent a	greement (sens	sitivity)
100.0	NPA - Negati	ve percent	agreement (spe	ecificity)
100.0	Positive Pred	lictive Valu	e (PPV)	
100.0	Negative Pre	dicative Va	lue (NPV)	
100.0	Accuracy			

	Acrome	trix™ In	hibition I	Panel - Inte	erfering Sub	stance S	Study			
	ACC	DN A ng/uL	Spec type	Jak2 qPCR V617F	Pillar MPN Jak2	AVF%	EXON	COVR	Tot Cov	Agreed
Inhibition panel 1	EDTA Plasma	1.4	blood	21%	V617F	22.9	14	1663	7261	Υ
Inhibition panel 2	Hemo. Low	1.4	blood	21%	V617F	22.6	14	1567	6924	Υ
Inhibition panel 3	Hemo. Mid	0.95	blood	21%	V617F	23.6	14	1675	7113	Υ
Inhibition panel 4	Hemo. High	0.7	blood	21%	V617F	22.4	14	1753	7839	Υ
Inhibition panel 5	Hepar.Plasma	0.8	blood	21%	V617F	23.4	14	1703	7286	Υ
Inhibition panel 6	Lipemic Plasma	0.3	blood	21%	V617F	22.9	14	1561	6823	Υ
Inhibition panel 7	Icteric Plasma	2.23	blood	21%	V617F	21.6	14	1480	6847	Υ
					AVE	22.8				
					STND	0.65				
					%CV	2.84				

		+	-	Total
GS MPL	+	11	0	11
exon 10	-	0	108	108
Illumina			Total	119
%				
100.0	PPA - Positive perc	ent agreem	ent (sensitivi	ity)
100.0	NPA - Negative per	cent agreen	nent (specifi	city)
100.0	Positive Predictive	Value (PPV)	
100.0	Negative Predicativ	e Value (NI	PV)	
100.0	Accuracy			

	recgulier i i culculi	ac amme fiai	· • ,	
100.0	Accuracy			
ACL VALIDA	ATION	ACL Mye	loid NGS	
		+	-	Total
NGS CALR	+	18	0	18
exon 9	·=·	0	101	101
Illumina			Total	119
%				
100.0	PPA - Positive perc	ent agreem	ent (sensitiv	ity)
100.0	NPA - Negative per	rcent agreen	nent (specif	icity)
100.0	Positive Predictive	Value (PPV)	
100.0	Negative Predication	ve Value (Ni	PV)	
100.0	Accuracy			

		14G5 p. ve	oir Quant	Linearity - v	erincation			
						y = 0	.9656x - 4.0278 R ² = 0.9697	
·								

ACL VALID	ATION	ACL Mye	loid NGS	
		+	-	Total
NGS JAK2	+	25	0	25
V617F	-	0	94	94
Illumina			Total	119
%				
100.0	PPA - Positive pero	ent agreem	ent (sensitiv	ity)
100.0	NPA - Negative per	rcent agreer	nent (specif	icity)
100.0	Positive Predictive	Value (PPV)	
100.0	Negative Predicati	ve Value (N	PV)	
100.0	Accuracy			
ACL VALID	ATION	ACL Mye	loid NGS	

ACL VALID	ATION	ACL Mye	loid NGS	
		+	-	Total
NGS JAK2	+	7	0	7
exon 12-15	-	0	112	112
Illumina			Total	119
%				
100.0	PPA - Positive perc	ent agreem	ent (sensitiv	ity)
100.0	NPA - Negative per	cent agreer	nent (specif	icity)
100.0	Positive Predictive	Value (PPV)	
100.0	Negative Predicativ	ve Value (N	PV)	
100.0	Accuracy			

Results

Of the 239 clinical specimens tested during validation; variants identified showed 100% concordance with the orthogonal methods. Out of 132 positive samples, 84 were SNVs and 48 were indels (including 14 CALR type 2,31 CALR Type 1, and 4 JAK2 ex12 indels). Repeatability and reproducibility demonstrated 100% concordance based on 28 repeats (SeraSeq QC reagent cat# 0710-0408). Limit of detection was established at; 1% for JAK2 p.V617F and JAK2 exons 12-15, 2% for MPL exon 10 − SNVs and 2% for CALR exon 9 InDels detected with 20-60ng input DNA. In analytical inclusivity study 132/132 samples were 100% concordant and in exclusivity study 26/26 samples were 100% concordant. The AcroMetrix™ Inhibition Panel (RUO) was used for an intrinsic inhibitors study and showed satisfactory performance

Workflow Comparison

The average laboratory TAT was shortened by 7-10 days, the cost was sufficiently reduced, and workflow efficiency increased with the oncoRevealTM Essential MPN Panel compared to the previous processes.

Conclusions

This intra-laboratory study demonstrates that the oncoRevealTM Essential MPN Panel performed very well against comparator methods. The performance characteristics, workflow benefits and TAT saving are suitable for clinical testing of MPN patient population to allow accurate clinical assessment.

References

- 1. Beadling C, at al: A multiplexed amplicon approach for detecting gene fusions by next-generation sequencing. J Mol Diagn 2016, 18:165e175
- 2. Cheng DT, at al: Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J Mol Diagn 2015, 17:251e264
- 3. Clinical and Laboratory Standards Institute. Nucleic Acid Sequencing Methods in Diagnostic Laboratory Medicine; Approved Guideline. CLSI document MM09-A2. ed 2. Wayne, PA: Clinical and Laboratory Standards Institute, 2014
- 4. M. Cazzola, at al. Myelodysplastic Syndromes. N Engl J Med 383;14 nejm.org October 1, 2020 DOI: 10.1056/NEJMra1904794