Pillar Biosciences oncoReveal Solid Tumor 22 Gene Panel on Biomek NGeniuS System App Template Version 1.0.5

Beckman Coulter makes no warranties of any kind whatsoever express or implied, with respect to this protocol, including but not limited to warranties of fitness for a particular purpose or merchantability or that the protocol is non-infringing. All warranties are expressly disclaimed. Your use of the method is solely at your own risk, without recourse to Beckman Coulter. This App Template has been demonstrated for use on the Biomek NGeniuS system for the chemistry kit version and the release date shown at the time when the App is selected and created but has not been validated by Beckman Coulter for use in the diagnosis of disease or other clinical conditions.

Biomek NGeniuS Next Generation Library Preparation System is not labeled for IVD use and are not intended or validated for use in the diagnosis of disease or other conditions.

©2024 Beckman Coulter, Inc. All rights reserved. Beckman Coulter, the stylized logo, and the Beckman Coulter product and service marks mentioned herein, including Biomek and Biomek NGeniuS, are trademarks or registered trademarks of Beckman Coulter, Inc. in the United States and other countries. All other trademarks are the property of their respective owners.

For Beckman Coulter's worldwide office locations and phone numbers, please visit Contact Us at beckman.com

App Template Description

The App Template for Pillar Biosciences oncoReveal Solid Tumor 22 gene panel prepares sample DNAs for sequencing by amplifying target regions containing mutational hot spots of 22 relevant genes using SLIMamp® (stem-loop inhibition mediated amplification) technology. The oncoReveal Solid Tumor 22 gene App Template supports 10-80 ng per PCR reaction for both standard genomic DNA and FFPE DNA. Libraries can be sequenced on Illumina MiSeq or NextSeq.

The App Template allows the user to produce between four and twenty-four libraries in a single continuous batch run. Optionally, users may select from multiple starting and stopping points. The App Template was designed using the Pillar oncoReveal Solid Tumor panel 22 gene kit (HDA-ST-1001-24). Ethanol wash volumes have been reduced to 60µL from 150µL to reduce tip consumption and sample processing time.

In addition to the consumables listed in the oncoReveal Solid Tumor 22 gene assay User Guide (UM-0018), the following consumables are required for a full run:

- 2.0mL Sarstedt Tubes Skirted Base (Sarstedt P/N: 72.664)
- 5.0mL Sarstedt Tubes False Bottom with Flat Base (Sarstedt P/N: 60.611.310)
- Axygen® 96-well Polypropylene PCR Microplate, Full Skirt, Clear, Nonsterile (Corning P/N: PCR-96-FS-C)

For research use only. Not for use in diagnostic procedures.

Pillar®, SLIMamp®, PiVAT and oncoReveal™ are trademarks of Pillar Biosciences, Inc. Current as of 03.12.2024

Scoping

Scoping

- Author
 - Pillar scientists with support from Beckman Coulter Life Sciences
- Kit
 - oncoReveal Solid Tumor 22 Gene
 - Version 1.6.0 (User Guide UM-0018)
- Supported
 - DNA Input 10 80 ng in 6.5 μL
 - Genomic DNA & FFPE DNA

Scoping

- Kit part number
 - oncoReveal Solid Tumor panel 22 gene kit (HDA-ST-1001-24)

- The following index kit was used for demonstration
 - IDX-AI-1001-96 Pillar TSCA Index Primers Kit A, 32 Combinations, 96 reactions

App Details

Sections Automated

Арр	Sections	
		-

Gene-Specific PCR Sample Prep

Gene-Specific PCR Amplification

Gene-Specific PCR Product Purification

Indexing PCR Sample Prep

Indexing PCR Amplification

Indexing PCR Product Purification

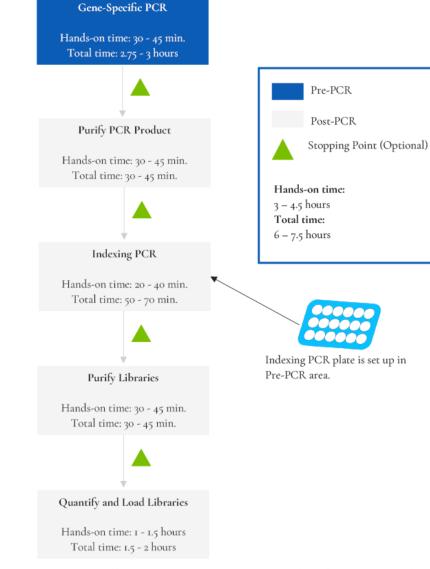


Figure 2. Library preparation workflow for oncoReveal™ Lung and Colon Cancer Panel. The workflow can be completed within one day but contains multiple optional stopping points for users with time constraints.

* ONCO/Reveal[™] Lung and Colon Cancer Panel Library Preparation User Guide

App Sections

Gene-Specific PCR Sample Prep

Gene-Specific PCR Amplification

Gene-Specific PCR Product Purification

Indexing PCR Sample Prep

Indexing PCR Amplification

Indexing PCR Product Purification

PCR steps are each split into two sections.* Sample Prep adds the reaction mixes to the DNA* Amplification does the thermal cycling

This allows for the Sample Prep and Amplification to be prepared in pre-PCR / post-PCR settings if desired (and if equipment allows), per the User Guide, although it is not necessary in automation.

If starting at Gene-Specific PCR Amplification, the Gene-Specific PCR Master Mix, LC oligo pool, and UDG must have already been added to the samples.

If starting at Indexing PCR Amplification, the Indexing PCR Master Mix and indices must have already been added to the samples.

App Sections

Gene-Specific PCR Sample Prep

Gene-Specific PCR Amplification

Gene-Specific PCR Product Purification

Indexing PCR Sample Prep

Indexing PCR Amplification

Indexing PCR Product Purification

The App allows for processing both gDNA and FFPE in a single batch run.

- If any sample is FFPE, then Uracil-DNA Glycosylase (UDG) must be included. UDG will not negatively impact performance of gDNA samples. UDG is usersupplied.
- If only gDNA is being processed, the UDG is optional, and can be replaced with H₂O.
- The Gene-Specific PCR *Reaction* Mix is provided to the system as a user-created manual mix.

In the Work Aid's Reagent Preparation and Manually Mix Reagents sections, the above is mentioned.

REAGENT PREPARATION							
REAGENT	PREPARE	MINIMUM VOLUME (μL)					
UDG or H2O for Gene-Specific PCR Reaction Mix	Uracil-DNA Glycosylase (UDG). Ensure reagent is fully thawed before pipetting. If the run does not contain FFPE DNA, nuclease-free water can be used in place of UDG.	6.8					

MANUALLY MIX REAGENTS - Gene-Specific PCR Re	action Mix
Prepare mixtures. Manually label the tube.	
Tube Label: GSPRMX	
Prepare the Gene-Specific PCR Reaction Mix reagents in a 2.0mL Sa	
(P/N: 72.664), according to the volumes in this table. If the run doe	
nuclease-free water can be used in place of UDG. Mix thoroughly,	then centrifuge. Affix label
before loading.	
REAGENT NAME	VOLUME (µL)
Gene-Specific PCR Master Mix	83.8
LC Oligo Pool	33.6

UDG or H2O for Gene-Specific PCR Reaction Mix

BECKMAN COULTER Life Sciences

2024-GBL-EN-105508-v1

6.8

App Sections

Gene-Specific PCR Sample Prep

Gene-Specific PCR Amplification

Gene-Specific PCR Product Purification

Indexing PCR Sample Prep

Indexing PCR Amplification

Indexing PCR Product Purification

The App, as designed by Pillar, does not make use of the Micronic-compatible carousel for introducing indices onto the Biomek NGeniuS system.

- 5 μL of each forward and reverse primer are manually added to an Axygen 96-well PCR Microplate (P/N: PCR-96-FS-C)
- Biomek NGeniuS system will aliquot out of the microplate into a cold storage RV.

In the Work Aid's Reagent Preparation section, the above is mentioned.

REAGENT	PREPARE	MINIMUN VOLUMI (µL
Indices IndexPlate: default	Add 5 µL of the assigned forward and reverse indexing primers to wells of an Axygen 96-well Polypropylene PCR Microplate, Full Skirt, Clear, Nonsterile (P/N: PCR-96-FS-C). It is recommended to match sample and index well positions. Centrifuge before use to ensure there are no bubbles. Wells: A1, B1, C1, D1	10.

App Sections

Gene-Specific PCR Sample Prep

Gene-Specific PCR Amplification

Gene-Specific PCR Product Purification

Indexing PCR Sample Prep

Indexing PCR Amplification

Indexing PCR Product Purification

The Indexing PCR *Reaction* Mix is provided to the system as a user-created manual mix (a dilution of the stock Indexing PCR Master Mix per the User Guide).

In the Work Aid's Reagent Preparation section, the above is mentioned.

MANUALLY MIX REAGENTS - Indexing PCR Reaction Mix

Prepare mixtures. Manually label the tube.

Tube Label: IPRMX

Prepare the Indexing PCR Reaction Mix reagents in a 2.0mL Sarstedt Tube - Skirted Base (P/N: 72.664), according to the volumes in this table. Mix thoroughly, then centrifuge. Affix label before loading.

REAGENT NAME	VOLUME (μL)
Indexing PCR Master Mix	148.7
H2O for Indexing PCR Reaction Mix	65.4

Settings	Settings								
	Setting	Value	Unit						
	Mix beads during Gene-Specific PCR								
	IndexPlate	default							
	Indexing PCR Cycles	5 5 - 10	Cycles						

Setting	Description
Mix beads during Gene-Specific PCR	When on, uses extra tips and mixes AMPure beads during gene-specific PCR to prevent them from settling. If not selected, mixing will only occur directly before gene-specific product purification.
IndexPlate	Allows the operator to enter in a name for the index plate being used in the batch.
Indexing PCR Cycles	Allows the operator to set the number of indexing PCR cycles performed within a range of 5-10.

Арр

Requested Reagent Volumes

Reagent	HDA-ST-1001-24 kit volumes ¹	4 samples volume requested	8 samples volume requested	16 samples volume requested	24 samples volume requested	
Gene-Specific PCR Master Mix ²	480	83.8	133.8	233.8	333.8	
LC Oligo Pool ²	200	33.6	53.6	93.6	133.6	
UDG ^{2,3}	User supplied	6.8	10.8	18.8	26.8	
Indexing PCR Master Mix ⁴	910	155.6	255.6	455.6	655.6	
AMPure XP	1Pure XP User supplied		1240	2120	3000	
70% EtOH	User supplied	4960	5920	7840	9760	

¹ All values in µL, consumed volumes are less than requested due to source labware dead volume requirements

² Reagents are combined as a manual mixture with user-supplied UDG or H₂0 to create Gene-Specific PCR Reaction Mix

³ UDG volumes are listed as if at least one FFPE sample was being processed, otherwise UDG is replaced by H₂O

⁴ Reagent is combined with H₂O as a manual mixture to create Indexing PCR Reaction Mix

Batch Runs Per Kit

Batch size	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Batches per kit	5	4	4	3	3	3	3	2	2	2	2	2	2	1	1	1	1	1	1	1	1
Samples	20	20	24	21	24	27	30	22	24	26	28	30	32	17	18	19	20	21	22	23	24
Largest batch with leftover volume	0	4	0	6	0	0	0	8	6	4	0	0	0	15	14	13	12	11	10	9	8
Total samples from kit	20	24	24	27	24	27	30	30	30	30	28	30	32	32	32	32	32	32	32	32	32

- The Batch size can be run Batches per kit times, leaving enough reagent volume to do one additional batch with Largest batch with leftover volume samples.
- Run combinations calculated based on reagent vial volumes provided by Pillar.
- 5 μL of each index (A50X and A70X) is required per sample. The IDX-AI-1001-96 index kit has enough reagent per-index to support 96 samples-worth of Biomek NGeniuS system batch runs.

Estimated Time of Completion

Samples	4	8	16	24
Index Aliquot	00:01	00:01	00:02	00:03
Reagent Aliquot	00:11	00:14	00:17	00:19
Processing	04:12	04:19	04:56	05:35
Total ETC	04:25	04:35	05:16	05:58

Times (hours:minutes) calculated based on 5 indexing PCR cycles, bead mixing, and with all plate-based indices contiguous starting with well A1. Does not include times needed for manual interactions (*e.g.*, reagent thawing, manual pipetting, placing labware into Biomek NGeniuS System, ...).

Consumables

		Batch Size (samples)								
Consumable	Part number	4	8	16	24					
RVs	C62705	7	7	7	7					
Bulk Reservoirs	C62707	1	1	1	1					
Lids	C62706	4	4	4	4					
Millitips (boxes)	C59585	8 (1)	8 (1)	8 (1)	8 (1)					
Microtips (boxes)	C62712	108 (1)	216 (1)	416 (2)	616 (2)					
Seal plate	C70665	1	1	1	1					
5.0 mL Sarstedt [®] vial	60.611*	1	1	1	1					
2.0 mL Sarstedt [®] vial	72.664*	2	2	2	2					
Axygen [®] 96-well PCR Microplate	PCR-96-FS-C*	1	1	1	1					
Price Per Sample (\$)**	-	37.84	18.92	11.14	7.42					

Costs assume using fresh tip boxes. Some clean tips will remain each run, reducing cost of subsequent runs. * 3rd party part numbers.

** Costs do not include Sarstedt reformat vials, Axygen plate, or empty tip boxes for tip disposal.

Demonstration Data

Experimental Design for Demonstration Run Conditions

Experiment	Sample Throughput	Target Sample Mass (ng)	DNA Type	PCR Cycles	Instrument	Operator(s)
1	4*	80	gDNA + FFPE DNA	5	А	А
2	9*	40	gDNA + FFPE DNA	5	В	В
3	24**	10	gDNA + FFPE DNA	5	А	А

* One negative control (H₂O) per experiment

** Two negative controls (H₂O) per experiment

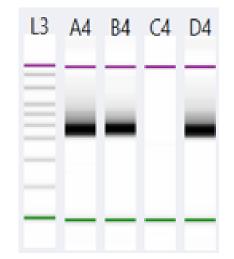
All experiments used Pillar TSCA Index Primers Kit A

The nM concentration was determined using the following formula:

LibraryConcentration[nM] = LibraryConcentration[ng/ μ L] x 5.

The ng/ μ L concentration of the samples was determined using a Qubit dsDNA HS Assay Kit.

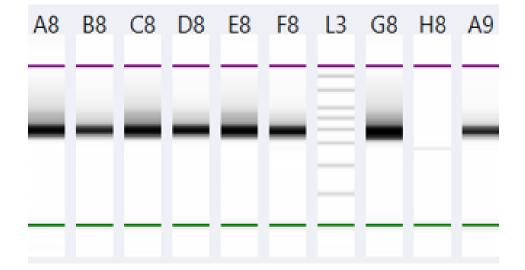
Library Construction Pass Criteria:


- Sample library + positive control library yields >3.5nM
- Non-Template control <2.0nM

Demo run 1, 4 samples, high input

Sample:	gDNA + FFPE DNA
Load concentration (ng/µL):	12.3
Library Prep Input Mass (ng):	80
PCR Amplification Cycles:	5
Version:	1.0.1

Sample	Stock conc (ng/μL)	Index	Library Yield (nM)
gDNA Sample 1	14.6	501, 706	62.5
FFPE Sample 1	13.3	502, 706	59.5
Negative Control	0	503, 706	0
gDNA Sample 2	14.6	504, 706	70.5



Demo run 2, 9 samples, mid input

Sample:	gDNA + FFPE DNA
Load concentration (ng/µL):	6.2
Library Prep Input Mass (ng):	40
PCR Amplification Cycles:	5
Version:	1.0.1

Sample	Stock conc (ng/μL)	Index	Library Yield (nM)	
gDNA Sample 1	14.6	505, 706	74	
FFPE Sample 1	13.3	506, 706	47.5	
gDNA Sample 2	14.6	507, 706	84	
FFPE Sample 2	13.3	508, 706	45.75	
gDNA Sample 3	14.6	501, 705	70	
FFPE Sample 3	13.3	502, 705	55	
gDNA Sample 4	14.6	503, 705	88	
Negative Control		504, 706	0	
FFPE Sample 4	13.3	505, 706	39	

Sample	Stock conc (ng/µL)	Index	Library Yield (nM)			
gDNA Sample 1	14.6	506, 705	26.1			
FFPE Sample 1	4.5	507, 705	11.05			
gDNA Sample 2	14.6	508, 705	26.2			
FFPE Sample 2	4.5	501, 704	10.1			
gDNA Sample 3	14.6	502, 704	26.7			
FFPE Sample 3	4.5	503, 704	11			
gDNA Sample 4	14.6	504, 704	31.95			
FFPE Sample 4	4.5	505, 704	10.85			
gDNA Sample 5	14.6	506, 704	27			
FFPE Sample 5	4.5	507, 704	10.3			
Negative Control 1	0	508, 704	0.3			
gDNA Sample 6	14.6	501, 703	24.2			
FFPE Sample 6	4.5	502, 703	9.95			
gDNA Sample 7	14.6	503, 703	27.75			
FFPE Sample 7	4.5	504, 703	11.35			
gDNA Sample 8	14.6	505, 703	26.35			
FFPE Sample 8	4.5	506, 703	7.95			
gDNA Sample 9	14.6	507, 703	21.95			
FFPE Sample 9	4.5	508, 703	9.35			
gDNA Sample 10	14.6	501, 702	19.2			
FFPE Sample 10	4.5	502, 702	8			
gDNA Sample 11	14.6	503, 702	24.35			
Negative Control 2	0	504, 702	0.735			
FFPE Sample 11	4.5	505, 702	9			

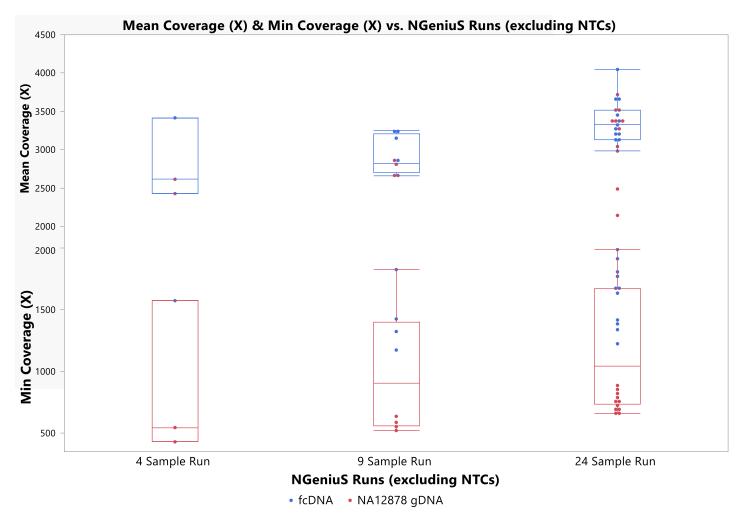
Demo run 3, 24 samples, low input

gDNA + FFPE DNA
1.55
10
5
1.0.1

A8

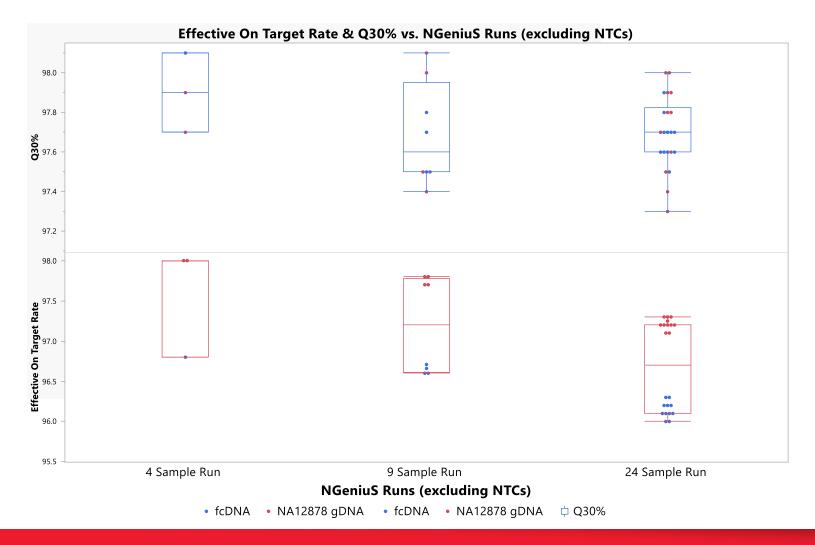
	B 8	C8	D8	E8	F8	G8	H8	A9	B9	C9	D9	E9	L3	F9	G9	H9	A10	B10	C10	D10	E10	F10	G10	H10
1	-		-		-		-		-	-		-	Ξ		-		-	_	-		-		-	_
1	-	-	-	-	-	-	-	-	-		-	-	Ξ	-	-	-	-	-	-	-	-	-	_	-
													Ξ											

Sequencing and Variant Analysis


Sequencing QC Results - Summary

QC Metric	Passing Average Criteria fcDNA		fcDNA Passing Samples	Average gDNA	gDNA Passing Samples		
Mean Coverage (All Amplicons)	≥ 1500X	3330	100% (16/16)	2986	100% (17/17)		
Minimum Coverage (Individual Amplicons)	≥ 200X	1569	100% (16/16)	673	100% (17/17)		
Overall Q30 (%)	≥ 75%	97.7	100% (16/16)	97.7	100% (17/17)		
Effective on Target Rate (%)	≥ 70%	94.5	100% (16/16)	97.0	100% (17/17)		

All sequencing runs pooled to 2 nM, then run on NextSeq 1000. (> 110Gb of sequence data per run, \geq 85% of bases higher than Q30 at 2 × 150 bp)



Sequencing QC Results – By Sample

Sequencing QC Results – By Sample

Variant Call Summary

Gene	Variant	Expected Allele Frequency (%)	Allele Frequency Cutoff (%)	Average Actual Allele Frequency (%), 10 ng DNA Input	Average Actual Allele Frequency (%), 40 ng DNA Input	Average Actual Allele Frequency (%), 80 ng DNA Input	Average Actual Allele Frequency w/ Standard Deviation (%), All Runs	Variant Detection Rate
BRAF	V600E	13.61	1	14.15	15.08	14.71	14.42 ± 1.42	16/16
EGFR	ΔΕ746-Α750	1.84	1	1.90	2.10	1.78	1.94 ± 0.51	16/16
EGFR	L858R	3.65	1	4.35	4.58	4.66	4.43 ± 0.72	16/16
EGFR	T790M	1.31	1.5	1.79	1.30	1.94	1.98 ± 0.38	10/16*
EGFR	G719S	23.4	1.5	24.29	24.82	23.72	24.39 ± 1.21	16/16
KRAS	G13D	15.3	1.5	16.48	16.13	16.37	16.38 ± 1.11	16/16
KRAS	G12D	5.39	1.5	5.48	5.09	6.38	5.43 ± 0.79	16/16
NRAS	Q61K	10.6	1	11.11	11.45	11.78	11.24 ± 1.5	16/16
РІКЗСА	H1047R	18.9	3.2	19.03	19.91	19.55	19.28 ± 1.32	16/16
РІКЗСА	E545K	7.88	3.2	8.51	8.74	8.95	8.59 ± 0.91	16/16

*The expected allele frequency for EGFR T790M is below the cutoff for this assay. As such, a 100% detection rate is not expected. The Average Actual Allele Frequency is calculated from the 10 variant calls passing the Allele Frequency Cutoff.

Demonstration Summary

Demonstration Summary

- The oncoReveal Solid Tumor 22 Gene App, written by Pillar, on the Biomek NGeniuS Next Generation Library Prep System prepares libraries at input masses between 10 and 80 ng of genomic DNA
- Yield at all tested input masses exceeded 3.5 nM final concentration
- NextSeq 1000 sequencing data of prepared libraries passes Pillar metrics for:
 - Mean coverage
 - Minimum coverage
 - Overall %Q30
 - Effective on target rate
 - Variant Detection rate for genes of interest

General automation considerations

- Please read and understand Biomek NGeniuS System IFU, C43212.
- Spin down index plate before use to make sure indices are at the bottom of wells
- Do not use unsupported index plates
 - Only Axygen® PCR-96-FS-C is supported for this App
 - If the plate geometry is not the same, it could result in an instrument crash
- Make sure foil, if present, of each index well is widely opened to prevent tip-friction binding and lifting
 of Index Plate
 - Use a *new* P200 or P1000 to pierce and widen *each* well being used
- · Avoid bubbles in reagent tubes to ensure accurate liquid level sensing and aliquoting
- The Work Aid requests more volume than what is consumed
 - Dead volume is needed in source tubes to ensure enough is available due to tolerance stack-ups
- Dead volume will be left behind in some storage wells
 - The nature of automation, tolerance stack-ups, and environment necessitates some overage
- · Make sure bulk reagents wet the entire length of reservoir
 - Ensures accurate liquid volume sensing
- Prepare samples while Biomek NGeniuS system is aliquoting reagents
 - Avoids sample evaporation while Biomek NGeniuS system is preparing run

oncoReveal Solid Tumor 22 Gene Panel App specific considerations

- Master mixes are manually prepared to reduce dead volumes and maximize kit usage
- Index plate is manually prepared to reduce dead volumes and maximize kit usage
- An excess (~4mL) of H₂O and EtOH is called for in the Work Aid to speed sample processing

App Template Revision Notes

- 1.0.1 Demonstration data obtained.
- 1.0.5 Updated preparation instructions and thermal cycler cooldown if early stopping points are chosen. Chemistry unaffected.

This document contains proprietary information owned by Beckman Coulter, Inc.

Any disclosure, use, copying or distribution of this information without the express written consent of Beckman Coulter, Inc. is strictly prohibited.

©2024 Beckman Coulter, Inc. All rights reserved. Beckman Coulter, the stylized logo, and the Beckman Coulter product and service marks mentioned herein are trademarks or registered trademarks of Beckman Coulter, Inc. in the United States and other countries. All other trademarks are the property of their respective owners.

